ProjektAutoMIND – Automated Model Inference from Neural Dynamics for a Mechanistic Understanding of Cognition

Grunddaten

Akronym:
AutoMIND
Titel:
Automated Model Inference from Neural Dynamics for a Mechanistic Understanding of Cognition
Laufzeit:
01.05.2021 bis 30.04.2023
Abstract / Kurz- beschreibung:
Human cognition depends on complex coordinated dynamics of neural populations, which is shaped by a rich heterogeneity in cellular properties and network connectivity patterns of neural circuits. While cognitive neuroscience leverages macroscopic brain signals to relate neural activity to behavioral states, we currently cannot dissect them for their physiological contributions, hindering mechanistic interpretations of experimental data. One way to systematically study how physiological parameters shape neural dynamics is through mechanistic modeling of spiking neural networks. However, current modeling approaches are not quantitatively constrained by observed electrophysiological data, and often require painstaking and ad-hoc parameter-tuning by hand. Efficient discovery of mechanistic models that are consistent with experimental data would dramatically accelerate our understanding of how cellular and network properties impact cognition, and why it breaks down in pathological states, representing a radical departure from how neural data is analyzed in cognitive neuroscience. To this end, I propose to develop a machine learning-assisted model inference tool—Automated Model Inference from Neural Dynamics (AutoMIND)—that can identify parameters of candidate spiking neural network models that could capture arbitrary target neural dynamics from human brain recordings. AutoMIND extends on recent advances in simulation-based inference techniques, incorporating simultaneous parameter manifold-learning and gradient-based simulations. AutoMIND has broad utility for tackling neuroscientific questions by enabling expedited in-silico experiments. Here, I apply it to multiscale neural data to study how cellular and network properties shape: 1) the emergence of synchronous network oscillations during early neurodevelopment, and 2) the difference in neural dynamics and computation between sensory and association cortices—two questions of fundamental importance to neuroscience.
Schlüsselwörter:
maschinelles Lernen
machine learning
simulation-based inference
likelihood-free inference
mechanistic modeling
spiking neural networks

Beteiligte Mitarbeiter/innen

Leiter/innen

Wilhelm-Schickard-Institut für Informatik (WSI)
Fachbereich Informatik, Mathematisch-Naturwissenschaftliche Fakultät
Bernstein Center for Computational Neuroscience Tübingen (BCCN)
Interfakultäre Institute
Exzellenzcluster: Maschinelles Lernen: Neue Perspektiven für die Wissenschaft (CML)
Zentren oder interfakultäre wissenschaftliche Einrichtungen
Tübingen AI Center
Fachbereich Informatik, Mathematisch-Naturwissenschaftliche Fakultät
Wilhelm-Schickard-Institut für Informatik (WSI)
Fachbereich Informatik, Mathematisch-Naturwissenschaftliche Fakultät

Lokale Einrichtungen

Universität Tübingen

Geldgeber

Hilfe

wird permanent gelöscht. Dies kann nicht rückgängig gemacht werden.