ProjektVegetation control on long-term to short-term landscape evolution from thermochronology and remote sensing

Grunddaten

Titel:
Vegetation control on long-term to short-term landscape evolution from thermochronology and remote sensing
Laufzeit:
01.03.2019 bis 28.02.2022
Abstract / Kurz- beschreibung:
Dieser Antrag skizziert ein Projekt, das den Zielen des SPP EarthShape folgt, indem es die Rolle von Biota für die Formungsprozesse der Erde untersucht. Diese Studie zielt darauf ab, (i) die ursprüngliche Annahme von EarthShape zu testen, dass alle primären Arbeitsgebiete eine ähnliche langfristige tektonische (Gesteinshebungs-) Geschichte aufweisen und (ii) den Einfluss von Biota auf Landschaften entlang eines ausgeprägten klimatischen und ökologischen Gradienten in der chilenischen Küstenregion über Jahrtausende zu quantifizieren.
Die Annahme einer identischen tektonischen (Gesteinshebungs-) Geschichte aller vier primären Arbeitsgebiete impliziert, dass laterale Variationen der Topographie und der stattfindenden Erdoberflächenprozesse ausschließlich durch Klima und Biota gesteuert werden/wurden. Tektonische Studien und thermochronologische Pilotdaten, legen nahe, dass dies möglicherweise nicht der Fall ist, und somit jedwede Schlussfolgerung über Biota-Topographie-Erosionsbeziehungen unvollkommen ist. Wir werden Festgesteins-Niedrigtemperatur-Thermochronologie (Apatit (U-Th)/He- und Fission-Track-Methode) und
thermisch-kinematische Modellierung (PECUBE) anwenden, um die tektonische
(Gesteinshebungs-) Geschichte aller vier primären Arbeitsgebiete in EarthShape über Millionen Jahre zu rekonstruieren. Die Ergebnisse sind sowohl für Beobachtungs- als auch für Modellierungsstudien, die großskalige Tektonik-Klima-Biota-Interaktionen und Landschaftsentwicklungen untersuchen (vgl. Phase-II-EarthShape-Anträge: PIs Ehlers und Hickler, Schaller und van der Kruk, Mutz und Niedermeyer), von großer Bedeutung.
Detritische (Tracer) Thermochronologie wird in allen primären Arbeitsgebiete von
EarthShape angewendet, um die antreibenden Kräfte von Erdoberflächenprozessen über Jahrtausende zu identifizieren. Von besonderem Interesse ist hierbei die Untersuchung der Beziehungen zwischen Vegetationsbedeckung, Geomorphologie, Erosion und Sedimenttransport. Dies geschieht durch statistische Zuordnung der detritischen Altersverteilungen zu den Herkunftsgebieten in den untersuchten Einzugsgebieten.
Geomorphologische und biotische Einflussfaktoren werden aus verschiedenen
Fernerkundungsdaten abgeleitet. Geomorphologische Erosionsfaktoren werden aus digitalen Höhenmodellen (ASTER, LiDAR) berechnet, während Vegetations-Erosionsfaktoren aus der Analyse multispektraler Satellitendaten (Sentinel, Landsat) in Verbindung mit Feldarbeit abgeleitet werden. Hieraus resultierende relative Erosionskarten können mit kosmogenen Nuklid-Erosionsraten kombiniert werden (z. B. EarthShape Phase I + II, PIs Schereler et al., Schaller und van der Kruk), um hochaufgelöste Erosionsraten-Karten für alle primären Arbeitsgebiet von EarthShape abzuleiten.
Wir erwarten, dass dieser innovative multidisziplinäre Ansatz (Kombination von
Thermochronologie und Fernerkundungsdaten) unser Verständnis der tektonischen, klimatischen und biologischen Landschaftsdynamik verbessern wird.
Schlüsselwörter:
Thermochronologie
thermochronology
Landschaftsentwicklung
landscape evolution
erosion
Chile

Beteiligte Mitarbeiter/innen

Leiter/innen

Forschungsbereich Mineralogie und Geodynamik
Fachbereich Geowissenschaften, Mathematisch-Naturwissenschaftliche Fakultät
Ehlers, Todd
Forschungsbereich Mineralogie und Geodynamik
Fachbereich Geowissenschaften, Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich Geowissenschaften
Mathematisch-Naturwissenschaftliche Fakultät

Lokale Einrichtungen

Fachbereich Geowissenschaften
Mathematisch-Naturwissenschaftliche Fakultät
Universität Tübingen

Geldgeber

Bonn, Nordrhein-Westfalen, Deutschland
Hilfe

wird permanent gelöscht. Dies kann nicht rückgängig gemacht werden.