ProjektELLIOT – European Large Open Multi-Modal Foundation Models For Robust Generalization On Arbitrary Data Streams
Grunddaten
Akronym:
ELLIOT
Titel:
European Large Open Multi-Modal Foundation Models For Robust Generalization On Arbitrary Data Streams
Laufzeit:
01.07.2025 bis 30.06.2029
Abstract / Kurz- beschreibung:
For improving the capabilities of general-purpose AI models and for extending their applicability to domains where the temporal
dimension – among several others – is of importance, we will target the development of the next generation of Multimodal Space-Time
Foundation Models (MSTFMs). These will combine spatio-temporal understanding, which is important even for modalities such as the
visual one that have already been introduced in large generative models, with the effective management of new time-relevant modalities
that are yet to be supported in foundation models, such as industrial time series data, remote sensing data and health-related measurements.
Real and synthetic data, to mitigate data scarcity, will be leveraged for training general-purpose MSTFMs and for further adapting them
for specific downstream tasks. Real data used for training will include data directly provided by members of the consortium as well as
data from relevant European Data Spaces, while complementary synthetic data will be generated by exploiting existing generative AI
capabilities as well as new ones developed in the project. European HPC infrastructure is directly included in the consortium to ensure
the availability of the necessary computing resources.
dimension – among several others – is of importance, we will target the development of the next generation of Multimodal Space-Time
Foundation Models (MSTFMs). These will combine spatio-temporal understanding, which is important even for modalities such as the
visual one that have already been introduced in large generative models, with the effective management of new time-relevant modalities
that are yet to be supported in foundation models, such as industrial time series data, remote sensing data and health-related measurements.
Real and synthetic data, to mitigate data scarcity, will be leveraged for training general-purpose MSTFMs and for further adapting them
for specific downstream tasks. Real data used for training will include data directly provided by members of the consortium as well as
data from relevant European Data Spaces, while complementary synthetic data will be generated by exploiting existing generative AI
capabilities as well as new ones developed in the project. European HPC infrastructure is directly included in the consortium to ensure
the availability of the necessary computing resources.
Schlüsselwörter:
maschinelles Lernen
machine learning
KI
Künstliche Intelligenz, Artificial Intelligence
Beteiligte Mitarbeiter/innen
Leiter/innen
Fachbereich Informatik
Mathematisch-Naturwissenschaftliche Fakultät
Mathematisch-Naturwissenschaftliche Fakultät
Ansprechpartner/innen
Mathematisch-Naturwissenschaftliche Fakultät
Universität Tübingen
Universität Tübingen
Institut für Theoretische Physik (ITP)
Fachbereich Physik, Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich Physik, Mathematisch-Naturwissenschaftliche Fakultät
SFB 1233 - Robustheit des Sehens – Prinzipien der Inferenz und der neuronalen Mechanismen
Sonderforschungsbereiche und Transregios
Sonderforschungsbereiche und Transregios
Bernstein Center for Computational Neuroscience Tübingen (BCCN)
Interfakultäre Institute
Interfakultäre Institute
Tübingen AI Center
Fachbereich Informatik, Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich Informatik, Mathematisch-Naturwissenschaftliche Fakultät
Juristische Fakultät
Universität Tübingen
Universität Tübingen
Fachbereich Informatik
Mathematisch-Naturwissenschaftliche Fakultät
Mathematisch-Naturwissenschaftliche Fakultät
Weitere Mitarbeiter/innen
Institut für Theoretische Physik (ITP)
Fachbereich Physik, Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich Physik, Mathematisch-Naturwissenschaftliche Fakultät
Lokale Einrichtungen
Tübingen AI Center
Fachbereich Informatik
Mathematisch-Naturwissenschaftliche Fakultät
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Theoretische Physik (ITP)
Fachbereich Physik
Mathematisch-Naturwissenschaftliche Fakultät
Mathematisch-Naturwissenschaftliche Fakultät
Geldgeber
Brüssel, Belgien
Kooperationen
Eindhoven, Niederlande
Leuven, Belgien
Amsterdam, Niederlande
Modena, Italien
Trento, Italien
Valencia, Spanien
Prag, Tschechien
Ljubljana, Slowenien
Thessaloniki, Griechenland
Alicante, Spanien
Aalto, Finnland
Casalecchio di Reno, Bologna, Italien
Barcelona, Spanien
Barcelona, Katalonien, Spanien
Puertollano, Kastilien-La Mancha, Spanien
Barcelona, Spanien
Prag, Tschechien
Créteil, Frankreich
Paris, Frankreich
Espoo, Finnland