ProjectBlack Angel – Mechanism of Paleoproterozoic hydrothermal Zn-Pb-Ag-rare metals mineralization in the Black Angel…
Basic data
Acronym:
Black Angel
Title:
Mechanism of Paleoproterozoic hydrothermal Zn-Pb-Ag-rare metals mineralization in the Black Angel district, central West Greenland
Duration:
01/10/2022 to 01/10/2022
Abstract / short description:
In this project, we intend to investigate the mineralogy, geochemistry and structures of Paleoproterozoic Zn-Pb-Ag-rare metals ores in the Black Angel District of central West Greenland. Black Angel represents one of the oldest carbonate-hosted Pb-Zn deposits on Earth, having produced 11.2 Mt Zn-Pb-Ag ore between 1973 and 1990. In a preliminary study, we were able to identify the Ge-mineral briartite, which is only known from 11 other deposits worldwide. Our preliminary data indicate that the formation of briartite is controlled by deformation of the ore and redistribution of Ge.
In this project, we aim at investigating the absolute age, processes of hydrothermal mineralization and the distribution of important trace elements (e.g., Cd, Ge, Ga, In) in the orebodies related to different structural features of the ore. The data will provide important constraints on (1) the temperature, pH and redox-state during hydrothermal mineralization, and (2) the potential source for metals and hydrothermal fluid. The aim of the project is to develop a detailed model of the evolution of hydrothermal mineralization from the source of fluids and metals to the site of metal precipitation. We expect important results from trace element combined with microstructural analysis of sulfides with respect to deformation- and fluid- controlled element distribution.
In this project, we aim at investigating the absolute age, processes of hydrothermal mineralization and the distribution of important trace elements (e.g., Cd, Ge, Ga, In) in the orebodies related to different structural features of the ore. The data will provide important constraints on (1) the temperature, pH and redox-state during hydrothermal mineralization, and (2) the potential source for metals and hydrothermal fluid. The aim of the project is to develop a detailed model of the evolution of hydrothermal mineralization from the source of fluids and metals to the site of metal precipitation. We expect important results from trace element combined with microstructural analysis of sulfides with respect to deformation- and fluid- controlled element distribution.
Keywords:
Grönland
Black Angel
Hydrothermal
Involved staff
Managers
Mineralogy and Geodynamics Research Area
Department of Geoscience, Faculty of Science
Department of Geoscience, Faculty of Science
Local organizational units
Department of Geoscience
Faculty of Science
University of Tübingen
University of Tübingen
Funders
Bonn, Nordrhein-Westfalen, Germany