ProjektPriRare: Exploring Privacy-Preserving Solutions for Rare Disease Analysis
Grunddaten
Titel:
PriRare: Exploring Privacy-Preserving Solutions for Rare Disease Analysis
Laufzeit:
01.01.2025 bis 31.12.2027
Abstract / Kurz- beschreibung:
Rare diseases, characterized by their limited prevalence in populations, often result from genetic mutations, presenting significant challenges in diagnosis and treatment. Collaborative research in this field necessitates sharing sensitive genetic and clinical data among institutions, raising concerns regarding privacy and
security. This research project aims to tackle these challenges by establishing a comprehensive framework for privacy-preserving rare disease analysis. The focus lies on variant filtering and prioritization, as well as rare-variant association studies. The project proposes a substantial advancement in privacy-preserving methodologies tailored for rare disease analysis. It seeks to offer secure and efficient solutions for variant filtering, prioritization, and rare-variant association studies. By furnishing privacy-preserving solutions that enable federated and collaborative analysis, the project facilitates joint research efforts without compromising data privacy. These innovations hold the potential to benefit both the rare disease research community and clinical settings, promoting sustainable and scalable approaches for privacy-preserving rare disease studies. To enhance transparency and collaboration, our project proposes an open-source framework for privacy-preserving rare variant analysis solutions. Designed for accessibility, compatibility, and scalability, these tools aim to seamlessly integrate with existing systems of rare disease researchers, ensuring broader usability.
security. This research project aims to tackle these challenges by establishing a comprehensive framework for privacy-preserving rare disease analysis. The focus lies on variant filtering and prioritization, as well as rare-variant association studies. The project proposes a substantial advancement in privacy-preserving methodologies tailored for rare disease analysis. It seeks to offer secure and efficient solutions for variant filtering, prioritization, and rare-variant association studies. By furnishing privacy-preserving solutions that enable federated and collaborative analysis, the project facilitates joint research efforts without compromising data privacy. These innovations hold the potential to benefit both the rare disease research community and clinical settings, promoting sustainable and scalable approaches for privacy-preserving rare disease studies. To enhance transparency and collaboration, our project proposes an open-source framework for privacy-preserving rare variant analysis solutions. Designed for accessibility, compatibility, and scalability, these tools aim to seamlessly integrate with existing systems of rare disease researchers, ensuring broader usability.
Beteiligte Mitarbeiter/innen
Leiter/innen
Fachbereich Informatik
Mathematisch-Naturwissenschaftliche Fakultät
Mathematisch-Naturwissenschaftliche Fakultät
Ansprechpartner/innen
Wilhelm-Schickard-Institut für Informatik (WSI)
Fachbereich Informatik, Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich Informatik, Mathematisch-Naturwissenschaftliche Fakultät
Interfakultäres Institut für Biomedizinische Informatik (IBMI)
Interfakultäre Institute
Interfakultäre Institute
Weitere Mitarbeiter/innen
Wilhelm-Schickard-Institut für Informatik (WSI)
Fachbereich Informatik, Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich Informatik, Mathematisch-Naturwissenschaftliche Fakultät
Lokale Einrichtungen
Fachbereich Informatik
Mathematisch-Naturwissenschaftliche Fakultät
Universität Tübingen
Universität Tübingen
Geldgeber
Bonn, Nordrhein-Westfalen, Deutschland