ProjektVerbesserte Minerallösungskinetik in der reaktiven Transportmodellierung

Grunddaten

Titel:
Verbesserte Minerallösungskinetik in der reaktiven Transportmodellierung
Laufzeit:
01.04.2025 bis 31.03.2028
Abstract / Kurz- beschreibung:
Reaktive Stofftransportmodelle sind wichtig für die Vorhersage von Mineralauflösungsreaktionen, der Entwicklung des Porennetzwerks, des Strömungsfelds und der Durchlässigkeit, was u.a. für die Verwitterung in der kritischen Zone, die Entwicklung von Karstsystemen und die technische Kohlenstoffspeicherung von Bedeutung ist. Die Zuverlässigkeit reaktiver Transportmodelle mit Mineralauflösung hängt von der Berücksichtigung der reaktiven Oberflächen ab. Dies in reaktiven Transportmodellen auf der Kontinuumsskala zu berücksichtigen ist schwierig, da die intrinsische Variabilität der Oberflächenreaktivität auf der Mikrometerskala schwer zu quantifizieren ist und die Auswirkungen des Zusammenspiels zwischen der kleinräumigen Variabilität von Strömung und Reaktivität auf den effektiven reaktiven Stofftransport auf größeren Skalen unbekannt sind. Ziel des Projekts ist es daher, die intrinsische Oberflächenreaktivität in reaktiven Transportmodellen zu implementieren, um die Vorhersagbarkeit der Mineralauflösung im Mikrometer- bis Zentimetermaßstab zu verbessern. Auf der Mikrometerskala wird der Einfluss der Oberflächen-Nanotopografie auf die Kalzitauflösung mit zwei Parametrisierungen der Nanorauigkeit bewertet: eine basierend auf der Standardabweichung der Oberflächenhöhe, die andere auf der Verteilung der Oberflächenneigung. Die reaktiven Transportmodelle im Mikrometermaßstab werden auf Testfälle der Mineralauflösung von einzelnen Kristallen bis zu komplexen Porennetzwerken angewandt, für die Datensätze mit gemessener Nanotopografie und Netto-Lösungsraten existieren. Als nächstes schlagen wir eine Upscaling-Strategie vor, um die Variabilität der intrinsischen Oberflächenreaktivität auf der Mikrometerskala in Simulationen auf der Zentimeterskala zu berücksichtigen. Es werden neue Beziehungen zwischen der Porosität und der Permeabilität aufgrund der mikrometerskaligen Simulationen entwickelt. Die hochskalierten Reaktionsraten und die petrophysikalischen Beziehungen werden in Modellen auf der Zentimeterskala implementiert, um die Vorhersagbarkeit der Mineralauflösung zu verbessern. Mit den entwickelten reaktiven Transportmodellen sollen experimentell abgeleitete heterogene Ratenverteilungen und beobachtete bevorzugte Auflösungsmuster reproduziert werden. Schließlich werden wir die Abhängigkeit der Mineralauflösungskinetik von räumlichen und zeitlichen Skalen in Systemen mit heterogener intrinsischer Oberflächenreaktivität untersuchen. Es werden Sensitivitätsstudien durchgeführt, um die Skalenabhängigkeit der effektiven Kalzitauflösung beinicht aufgelöster Variabilität der intrinsischen Oberflächenreaktivität zu verstehen. Für verschiedene Bedingungen werden wir eine Längenskala angeben, von der an die Heterogenität der intrinsischen Oberflächenreaktivität homogenisiert werden kann, was zu konstanten effektiven Koeffizienten führt. Wir erwarten, die allgemeine Anwendbarkeit der entwickelten reaktiven Stofftransportmodelle zu bestätigen.
Schlüsselwörter:
reactive-transport modeling
mineral-dissolution kinetics
crystal surface reactivity
porous media
pore-scale modeling
upscaling
core-scale modeling
calcite

Beteiligte Mitarbeiter/innen

Leiter/innen

Forschungsbereich Angewandte Geowissenschaften
Fachbereich Geowissenschaften, Mathematisch-Naturwissenschaftliche Fakultät

Lokale Einrichtungen

Forschungsbereich Angewandte Geowissenschaften
Fachbereich Geowissenschaften
Mathematisch-Naturwissenschaftliche Fakultät

Geldgeber

Bonn, Nordrhein-Westfalen, Deutschland
Hilfe

wird permanent gelöscht. Dies kann nicht rückgängig gemacht werden.