ProjektHarnessing Vision Science to Overcome the Critical Limitations of Artificial Neural Networks
Grunddaten
Titel:
Harnessing Vision Science to Overcome the Critical Limitations of Artificial Neural Networks
Laufzeit:
14.03.2024 bis 13.03.2027
Abstract / Kurz- beschreibung:
Artificial neural networks (ANNs) drive the current interest in computer vision systems and artificial intelligence (AI) in general. However, ANNs used in computer vision still suffer from a number of shortcomings such as their susceptibility to adversarial attacks or their need for vast amounts of data to train them. Both limitations are not observed in biological vision systems. We believe that one fundamental difference between biological and artificial vision systems are the formers stronger, dynamic nonlinearities in the first stages of processing. In this grant we explore the intrinsically nonlinear receptive field (INRF) as a potential (partial) remedy for some of the shortcomings of current ANNs in vision science.
Schlüsselwörter:
Spatial Vision
INRF
Computational Modeling of Vision
Beteiligte Mitarbeiter/innen
Leiter/innen
Mathematisch-Naturwissenschaftliche Fakultät
Universität Tübingen
Universität Tübingen
Wilhelm-Schickard-Institut für Informatik (WSI)
Fachbereich Informatik, Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich Informatik, Mathematisch-Naturwissenschaftliche Fakultät
Lokale Einrichtungen
Fachbereich Informatik
Mathematisch-Naturwissenschaftliche Fakultät
Universität Tübingen
Universität Tübingen
Geldgeber
Bilbao, Spanien
Kooperationen
Valencia, Spanien
Madrid, Spanien