ProjectQLUSTER – Quantum and Classical Ultrasoft Matter

Basic data

Acronym:
QLUSTER
Title:
Quantum and Classical Ultrasoft Matter
Duration:
01/01/2023 to 31/12/2026
Abstract / short description:
QLUSTER is constituted as a collaborative network for advancing research in fundamentals and applications, training ESRs with broad skillsets and high adaptability to the increasingly knowledge-based economy of the EU, and with a strong commitment to communicating science to society. Despite similarities in phenomena, language and methods employed to study clustering and mesophase organization across widely different length scales — from subatomic to macromolecular — a coherent effort to bring distinct communities in classical and quantum soft matter together has not been yet undertaken. Our objective is to advance the fundamentals in such fields far beyond the state of the art, cross-fertilizing and creating permanent ties between communities that have evolved separately so far, and fostering the transfer of knowledge essential for a broad range of applications. The ambitious research and training programme will address the properties of classical and quantum soft matter systems under a common framework based on the underlying ultrasoft interactions of the constituents. Ultrasoftness is the key factor leading to the observed complexity in the dynamics, structure, and response to external drives of these different entities (complex polymers, soft colloids, Rydberg atoms in optical lattices, vortex matter in superconductors, etc). QLUSTER comprises a unique theory/experiment balanced team of specialists in quantum optics, polymer physics and macromolecular chemistry among others, providing a valuable platform for communication between the different communities of research in ultrasoft matter. The impact in the academic and private sector of the EU will be broad. There are no previous examples of similar initiatives in the world and QLUSTER will put the EU in a privileged position, through fostering transfer of fundamentals and methods, to innovate in large-scale sectors as e.g., tyre manufacturing, and to find innovative applications of quantum science.

Involved staff

Managers

Institute of Physics (PIT)
Department of Physics, Faculty of Science

Local organizational units

Institute of Physics (PIT)
Department of Physics
Faculty of Science

Funders

Cooperations

Help

will be deleted permanently. This cannot be undone.